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ABSTRACT

This paper deals with a classification problem based on ranking and selection ap-
proach. We assume that the populations follow multivariate normal distribution. The
corresponding selection problem is to choose the population with the smallest Mahalanobis
distance. The subset selection approach is considered throughout this paper. Sometimes
the indifference zone approach is also proposed. It should be pointed out that, for the
subset selection approach, we need not assume that the individual to be classified belongs
to one of the several given categories. The classification procedures depend on whether
the parameters A. and E1 are known or unknown.
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1. Introduction

The problem of classification arises when an investigator makes a number of measure-

ments on an individual and wishes to classify the individual into one of several categories

on the basis of these measurements. Since Fisher (1936) introduced the linear discriminant

function for distinguishing between two multivariate normal distributioi.s with a common

covariance matrix, a great deal of work has been done by many authors on this prob-

lem. For "t, extensive bibliography, the reader is referred to Anderson, Das Gupta and

Styan (1972), Das Gupta (1973) and Lachenbruch (1975). For a general approach to this

problem, Anderson (1984) is a good reference.

In general, for the classification problem, we assume that the individual to be classified

belongs to one of the several categories. In a real situation, this assumption may not be

appropriate. Thus the problem of selecting the nearest category to the individual based on

distance function was considered to cover the above drawback. For the decision theoretic

approach see Cacoullos (1965a, 1965b) and Srivastava (1967). Although some intuitive

classification procedures have optimality properties based on decision viewpoint, in practice

we want to control the probability of misclassification. Using the classical approach, it is

difficult to control this probability. Hence an approach based on the concept of ranking and

selection was considered by Cacoullos (1973) and A.K. Gupta and Govindarajulu (1973,

1985). Unfortunately, their results are too conservative and very 1!i_ . d.

Let CC stand for a correct classification and R denote a classification procedure, for

a given constant P*, 1/k < P* < 1, we want to choose a classification procedure R to

satisfy the probability requirement (1.1)

P(CCJR ) L, P* 11

where P(CCIR) is the probability of a correct classification when the procedure R is used.

To make the classification problem more precise, we may ask the problem: can one find a

classification procedure satisfying the probability requirement (1.1) and what is the sample

size needed?

Let 7ri, i = 0,1,... , k, be k+ 1 populations, we want to classify ro as one of the iri, i -
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k. We assume that ri ,-- Np (#i, Ei) (the p-variate multivariate normal distribution

with mean vector u-. and covariance matrix Ej), i = 0, 1,... , k. Based on the Mahalanobis

distance between two populations, our problem is related to the problem of selecting the

smallest Mahalanobis distance. The subset selection approach is considered throughout

this paper. Sometimes the indifference zone approach is also used. The classification

procedures depend on whether the parameters t. and Ei are known or unknown.

2. Classification procedures when j-0 known, j, i = 1,..., k, unknown

In this section we assume that uo is known and 14,, i = 1,...,k, are unknown. The

Mahalanobis distance of iri and 7ro is defined to be Oi = (Ei - - -) (Li - =

1, ... ,k. Let 0(11 :! *.. <5 0 [kj denote the ordered values of the G,'s, i = 1,... ,k. Our

classification problem may reduce to a selection problem which selects the population

corresponding to the parameter 0111. We will classify 7r0 as the selected population when

the indifference zone approach is used, and classify 7ro as any one population in the selected

subset when the subset selection approach is used.

Let Xi, j = 1,... ,n, be a random sample from population irj, -- = _ Z Xj, be
3= 1

the sample mean vector, Si = n - (Xij - 7i) (Xij - X)' be the sample covariance
j=1

k

matrix for the population iri, i = 1,...,k, respectively and S= Si be the pooled

sample covariance matrix of populations 7rj,..., rk. Throughout this paper, we denote
2

XP;6 as the noncentral chi-square distribution with degrees of freedom p and noncentrality

parameter 6 and Fp,q;s as the noncentral F-distribution with degrees of freedom p and q

and noncentrality parameter 6. Also, let Gp(x; 6) denote the cdf of 2 ;6 and Fp,q(x; 6) the

cdf of Fp,q;6. When 6 = 0 we simplify these by X4, Fp,q, Gp(x) and Fp,q(z) respectively.

We will discuss the classification procedures in various situations.

2.1. E , i = 1,...,k, known

2.1.1. Indifference Zone Aproach

For the indifference zone approach, we will make the assumptions 0111 = 0, i.e. iro
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belongs to one of the 7ri, i = 1,..., k, and 0[2 ) > A, where A is a given positive constant.

Let Yi = n i - _j " ( -- , i =,... k, then Y, _ X2;nei . Intuitively, we will

consider the classification procedure R, as follows:

RI: Classify 7ro as 7ri if and only if Yj = min Y.

1<j<k 3

For a given P*, we want to find an appropriate sample size n so that the probability

requirement (1.1) is satisfied. The following theorem is useful for this problem.

Theorem 2.1. inf P(CCIRi) = fo[1 - Gp(z;nA)]k-ldGp(x). (2.1)

Proof. Let Y(1) denote the statistic corresponding to the parameter O[il. Then

P(CCIR1) = P {Y(i) < Y(j), j = 2,...,k}

= J 171 [1 - Gp (x;nOIj)] dGv(x)
3j=2

> j [1 - Gp(x;nA)]k-ldGp(x) (2.2)

The inequality (2.2) holds, since Gp(x; 6) has the stochastic increasing property and the

equality is attained when 0[21 = ... = 0(k] = A. E3

Remark 2.1. Let d be the solution of the equation

[1 - Gp(x;d)]k-ldGp(x) = p*(2.3)

and n* be the smallest positive integer such that nA > d. Then n* is the sample size

needed to guarantee the probability requirement (1.1).

2.1.2. Subset Selection Aproach

For the subset selection approach, Gupta (1966) and Gupta and Studden (1970) have

considered the problem for selecting the smallest parameter of A 1j7s., i = 1,...,k.

Following their idea, we consider the classification procedure R 2 as follows:

R 2 : Classify 7ro as any one of the iri's for which Yi < c2 min Y, where c2 > 1 is the

smallest value such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theo-

rem:
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Theorem 2.2. inf P(CCIR2) = fol[ - GP(X/c 2)]kldGp(x). (2.4)

Proof. P(CCIR2) = P {Y(I) -c 2 Y(), j = 2,...,k}
0,k

= j 7[1 - G, (X/c 2 ;nO[j])] dGp (x; n0[I])
f i=2

f j [1 -Gp (x/c 2 ;n 01[)] k - i dGp (x; nO[1) (2.5)

> [1 - Gp(X/c 2'!k- l dGp(z). (2.6)

The equality in (2.5) holds when 0111 0121 = ... = 0[kI and the equality in (2.6) holds

when 01i = 0. 0

Remark 2.2. The values C2 satisfying the equation f0[1 - Gp(x/c 2)]k-dGp(x) = P* can

be found from Gupta and Sobel (1962) and Armitage and Krishnaiah (1964).

On the other hand, we may consider another classification procedure R 3 as follows:

R 3 : Classify ,r0 as any one of the 7ri's for which Yi _< c3 , where C3 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

For the determination of the value C3, we can use the following theorem:

Theorem 2.3. inf P(CCIR3) = Gp(c 3), if 011 = 0.

Proof. P(CCIR3 ) = P {Y(I) <C3)

= Gp(c3) if 0[11 = 0. E3

The values of C3 can be found from X-tables.

Remark 2.3. Note that if we use the procedure R 3 , the selected subset may be an empty

set. This drawback suggests that 7ro may not belong to one of the 7ri, i = 1,..., k.

Remark 2.4. We may consider a testing problem: H 0:_ = j-t' for some i, i = 1,... k,

vs. HI:_ 0 0 -i, i = 1,...,k. For a level a test, the suggested rejection region could be

min K > d, where d is the c3 value determined by the procedure R 3 and the associated
S<_i<k



probability P* is 1 - a. We note that

PH0  min Y_ -d = I-PH° (mij< d
P ' 1<'jyk (m1:5<k d

<1-PHo (Y() < d)= 1 -P =P

2.2. EI, i = 1,...,k, unknown, not all equal

2.2.1. Indifference Zone Aproach

If Ei, i =,...,k, are unknown but not all equal, we may estimate Oi by ( -t)'sr-
"" ) S - - i l..k, and define

(~'-~) z= 1..,. et 17 =n(Xi-,
a classification procedure R4 as follows:

R 4 : Classify 7to as 7r. if and only if Y* = min Y.*.

We note that Y*Fp, and Fp,,-p(x;nOi) has the stochastic increasing

property. If we assume that 01j = 0 and 0[21 > A, then we have the following theorem:

Theorem 2.4. inf P(CCIR4 ) = fo[1 - Fp,,-p(x;nA)jk-ldFp,n-p(X). (2.7)

Proof. P(CCIR4 ) = P { -p Y* < Y-p vY*), j = 2,. .. ,k}[(n-1)p (1 - (n-1)p (') "I

f-oo 

k

= f j [1 - F,,np (x;nO[j])] dFp~n(z)
0j=2

_> - Fp,np(x;nA)]k-ldFp,np(x). El

Remark 2.5. In order to satisfy the probability requirement (1.1), we should choose the

smallest n such that nA > d and f0°°[1- Fp,np(x;d)]k-ldFp,n-p(x) = P*.

2.2.2. Subset Selection Approach

Analogous to Gupta and Studden (1970), we consider the classification procedure Rs

as follows:

R5: Classify iro as any one of the 7ri's for which Y* < c5 min Y, where cs > 1 is the

smallest constant such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theo-

rem:
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Theorem 2.5. inf P(CCIRs) = foil - FP,,,_P(X/cs)]k-'dFp,,,_p(x). (2.8)

Proof. P(CCRs) = P "Y() <S ,5 pY(*), 2,...k

= fo I i- Fp,_p (x/cs; n0jj)] drp np (x; noIj)
=2

> 1p [ - _ (/c; nO[ij)]' -1 dtpnp (x; n0 1 ]j)
f00

> [1 - Fpn-p(x/Cs)ldk-Fp,,-p(x).

Remark 2.6. The value of c5 is the solution of the equation

J [1 - Fp,,-p (XIcs)k-dFp,n-p(X) = P*.

On the other hand, we may consider a classification procedure R6 as follows:

R 6 : Classify 7r0 as any one of the 7ri's for which Y1* S c6, where c6 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

For the determination of the c6 values, it is easy to show that

Theorem 2.6. inf P(CCIR6) = p C if 0[1] = 0.

The values of c6 can be found from the Fpn-p-tables.

Remark 2.7. Note that if we use the procedure R 6 , the selected subset may be an empty

set.

Remark 2.8. We may consider a testing problem: H0:o = Ai., for some i, i = 1,... ,k,

vs. HI:o1 0 i4 4, i = 1,... ,k. For a level a test, the suggested rejection region could be

min Y* > d, where d is the c6 value determined by the procedure R6 and the associated

probability P* is 1 - a.

2.3. i = E, i = ... ,k, unknown

When E = E, i = 1,...,k, are unknown, we estimate E by S and let Yi**

n i-_ S-' - _,uo I i = 1,...,k. We note that Yi* V-P+I v-p+I;ne,,
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where v = k(n - 1) and a'E77'a/Chi(SE-') ! j'S-'a > a'E-'g/Chp(SE-') for any,

p x 1 vector a, where Chi(SE2-') is the i-th smallest eigenvalue of the matrix SE-'. Let

Z =Ch1 (SE-')/Chp(SE-1) and H(z) be the cdf of Z (H is independent of p ,Z'

1,..,k, and E~). This problem was considered by Chattopadhyay (1981) for subset selec-

tion approach.

2.3.1. Indifference Zone Approach

For the indifference zone approach, we consider the classification procedure R17 as

follows:

R 7 : Classify 7r0 as 7i if and only if Yj* min Y.*.
1<j 3

For this procedure, the following result can be used to determine the required sample

size to satisfy the probability requirement (1.1).

Theorem 2.7. inf P(CCIR7) >_ f01 fo[ Gp(x/z; nA)]kl' ~ d~) (2.9)

Proof. P(CCjR7 ) = P {Y( ' < Y(',

= jJ J1)[ - GO) (X; -O[3) G h(xSdHz )

j fF1ol - Gp(x/z; nA)]kl-dGp(x)dH(z). E

Remark 2.9. Since Ch 1 (SE-')Ch(SE2')-P-1 as n --* oo, we have P(CCIR7) -*1as

n -- + o.

Remark 2.10. The distribution of Ch 1 (SE-')/Chp(SE-1) can be found in Pillai, AI-Ani

and Jouris (1969).

Remark 2.11. It is easy to show that inf P(CCjR7 ) ! P(Z > 0,4 fo[1-Gp(xOL; nA)j 1dG, (x),

where e > 0Oand P(Z < 0, = c. The equation P(Z > 0,)fo p(l, A k dpx
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P* can be used to determine the required sample size.

2.3.2. Subset Selection Approach

For the subset selection approach we refer to Chattopadhyay (1981). We consider the

classification procedure R 8 as follows:

R 8 : Classify iro as any one of the 7ri's for which Yi* c8 min Y., where c3 > 1 is the
1-5j<k

smallest constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 2.7, we have the following result:

Theorem 2.8. inf P(CCJIR8 ) > fo fo[1 - G,(X/csz) k-dGp(x)dH(z). (2.10)

Remark 2.12. f2 fo[1 _ Gp(x/csz)lkldGp(x)dH(z) -- 1 as n - oo.

Remark 2.13. It is easy to show that 00
infP(CCIRs) _ P(Z > 0e) j [1 - GP(x/C 8 9)Ik-dap(x).

On the other hand, we may consider an easier classification procedure Rg defined as

follows:

Rg: Classify 7ro as any one of the 7ri's for which Y'* < c9 , where c9 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

It is easy to show that

P~cc~o)= Fp _p, (-+1 C9) i f 0[11 = 0
Theorem 2.9. infP(CCIRg) = 0 ~ ) ~ = o.

Remark 2.14. We can consider the testing problem: H0 : i0 = -S, for some i, I k,... ,

vs. HI: _4 $ 1., i = 1,... ,k. The reject region is min Y-** > d.

3. Classification procedures when g-0 unknown, 1L,' i = 1,... 1k, known

In the case that 1-0 is unknown and i, i =1,...,k, are known. Let Xo,.. . ,Xo= be a

random sample from iro and X0 = Z X, So = n Z (Xoj- X0) (X0o- Xo)' The
j=1 j=1

Mahalanobis distance between populations 7r0 and iri is defined to be Aj = - -
(,i -o " We will discuss the classification procedures in various situations.

9



3.1. Eo known

3.1.1. Indifference Zone Amlroach

For the indifference zone approach, we assume that A(21 - A(W >! A. We define Z,

(-o- ! ) 'o (Yo , 1,..., k. Intuitively, we may consider the classification

procedure Rio as follows:

R10 : Classify 7r0 as 7ri if and only if Zi min Z,.

For the --)rocedure Rio, we note that

2'i 2', 1,...,k, j 54 iff 2 (!E - E,)'E-' ( 0 -_ A3 - A1.

Thus we have the following result:

Theorem 3.1. inf P(CCIRio) : 1 - (k - 1)4 (- ) (3.1)

where 4P is the cdt of the standard normal and b2 = max b?2 6?-max - X - (pEj Li).

Proof. P(CCIRo) =P {Z(i) < Z~j, J= 2,... ,k}

=P { 2 (pj -!Et))Y: (X0 - _AO) A13  A[,,, j 2,..=

kk

kj~j -,)E-1-o- Ao

j=2

k (_________

The inequality (3.2) holds since 62 > E-~~Is 1 '(±. ())D

Remark 3. 1. As n --+ oo, 0 (v~) A 0, hence P(CCJR1 0 ) -*1. For given P*, we can

find n such that inf P(CCIRio) : P..

10



3.1.2. Subset Selection Approach

For the subset selection approach, we consider a classification procedure R 1 as follows:

R11: Classify 7r0 as any one of the 7ri's for which Zi < min Z + cll, where cll is the

smallest positive constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 3.1, we have the following result:

Theorem 3.2. infP(CCjRii) 1 - (k - 1)t () (3.3)

Proof. P(CCIRii) = P {Z(,) _ Z(j ) + Cl, j = 2,...,k}

- P {2 ( (() O ( -X ) A)j - +(,] + ell, j 2,..., k

>P 12 E0,j. - 1) (:X: -- 0 c 1l, j = 2, ... ,Ik

-> -(k-1)4(D( - c 12 6 ell El

On the other hand, we suggest another classification procedure R 12 as follows:

R 12 : Classify 7ro as any one of the 7ri's for which nZi < C12, where C12 is the smallest

positive constant such that the probability requirement (1.1) is satisfied.

For this procedure, it is easy to show that

Theorem 3.3. inf P(CCIR12) = Gp(c 1 2) if Ai]= 0.

Remark 3.2. We may consider a testing problem: Ho:1 o = ti., for some i, i = 1,...,k,

vs. HI:IA 4s t., i = 1,... ,k. The suggested reject region is min Zi > d.
1_0 -- k

3.2. Eo unknown

When 0 is alsc i- own, we estimate it by S0 , and let Z* = n - ti So0 - ti ,

i = 1,... ,k. For the ir-' fence zone approach, we consider the classification procedure

R 1 3 as follows:

R 13 : Classify 7ro as 7ri if and only if Z.* = min Z.

11



Analogous to the proof of Theorem 2.7, and Theorem 3.1, for large sample, we have

the following result:

Theorem 3.4. inf P(CCIR13 ) _ 1 (k - 1)4 (% ), if n is large enough.

Proof. P(CCIR13 ) = P {Z(*) Z~>, j = 2,...,k}

Ch1 (Sor0 ') E

( X- - _ j)), j = 2,., k

P tn { (:X~ -L) (10 -E ~ n (:X0 -M,)'j (:x0 - m,. 2,.. k}

> 1- (k - 1)-0 2A if n is large enough. E

For the subset selection approach, we consider the classification procedure R 14 as

follows:

R 14 : Classify 7ro as one of the 7ri's for which Zj* < min Z* +c 14 , where C14 is the smallest
-- 1<<k

positive constant such that the probability requirement (1.1) is satisfied.

For large sample, it is easy to show that

Theorem 3.5. infP(CCIR14) _ 1- (k - 1)b (C14).

- On the other hand, a simple procedure R 15 can be defined as follows:

R 15: Classify 7r0 as one of the 7ri's for which Zj* < c1s, where Cls is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

Since Z - -)Fp,n-p;n,\,, it is easy to show that

Theorem 3.6. inf P(CCIRi5) = Fp,,,_ \ ( C,- s) if ,[ 1 ] = 0.

4. Classification procedures when i i = 0, 1,...,k, unknown

When i., i = 0, 1,..., k, are unknown, we use 0i defined in Section 2 as a measurement

of distance between populations 7r0 and 7ri, i = 1,... , k, respectively. Let Xi,, j = 1,..., n,

12



be a random sample from population 7ri, i = O, 1,..., k, X = ±,  _ be the sample

j=l
n

mean vector and Si = n 1  (Xij - Xi) (X ij - Xi)' be the sample covariance matrix
j=1

k

within the population 7ri and S* L Si is the pooled sample covariance matrix. Wei=O

will discuss the classification procedures in various situations.

4.1. Ej, i=l,...,k, known

When Ei, i = 1,...,k, are known. We define Uj = n (L- -. o- Xi),

i = 1,..., k. For this case, we use the subset selection approach and consider a classification

procedure R 16 as follows:

R16 : Classify 7ro as one of the ri's for which Ui < c16 min Uj, where C16 > 1 is the
1:j<k

smallest constant such that the probability requirement (1.1) is satisfied.

For this procedure, we have the following result:

Theorem 4.1. inf P(CCIR16) _ foi - Gp(2x/cl 6)]kldG(x). (4.1)

Proof. Let U(j) = n - 0  - j = 1,... ,k. GivenXo = , U0), j =

1,...,k, are independent and U(j) - x 2

(Ej . i U E-, )

P(CCIR,6) = P{u(l) <_ C16 U(), j = 2,...,k1

P U(I) _ CleU( ), j = 2,...,k

where F is the cdf of K---, U(&), J = 2,... ,k, and U(i) are independent and U(5 -- X .

Now U(i) 2(. Hence

P(CCIRi6 ) >_ [ -1n(2y/c 1 6 )k-IdGp(y). (

13



Remark 4.1L If we use the measurement vi = (is - LO (E" + E)-' i L - E). Then we

have an easier classification procedure R 1 7r defined by

R17 : Classify ir0 as one of the 7ri's for which U! < C17, where U* = n(X-~'3o

E2j)- (X - X1 ) and C 1 7 is the smallest positive constant such that the probability re-

quirement (1.1) is satisfied.

It is easy to show that inf P(CCIR17) = Cp(c 17) if V(1= 0.

4.2. EA, i = 1,. .. , k, unknown, not all equal

When Ej, i =1..,k, are unknown and EZ,, i =1..,k, are not all equal. We define

Vi = n (Y. - 1 )Si- (V - Xi), i = I,-., k. A classification procedure R18 is defined

as follows:

R18: Classify 7r0 as one of the i's for which Vi :5c 1 8 min V, where c18 > 1 is the smallest
1!5j k 3

constait such that the probability requirement (1.1) is satisfied.

Given L ,=xwe have V- ('- )P F , Pnn- Analogous to the proof

of Theorem 4.1, we have the following result:

Theorem 4.2. inf P(CCIRis) fo f[1 - Fpnp2/j~''~~-() (4.2)

Proof. f P{V(1) ! cl 8 Vj, j =2,..., kX O = 11dF(j)

P f {V(i) : c 18V(;.), j = 2, ... , k}

where V )and V(1) are independent, V(1) (n-ip Fpn- and VJ) p, npi

2, .... ,k. Thus

P(CCIRis) [1ft - Fpnp2yc81- ~~-(Y).

Remark 4.2. We can define an easier classification procedure R19 as follows:

R 19 : Classify iro as one of the 2ri's for which Vi ,. c 19 , where c19 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

It is easy to show that inf P(CCIR1g) = Fpn- (~~j~~) ifn = 0

14



4.3. E= E, i01., k, unknown

When E = E, i = 0, 1,..., k, and E is unknown, we estimate E by S' and define

Wi = n 7 - X,)' S*-' (-o - Xj,) , i = 1,...,k. Then a classification R20 can be defined

by:

R 20 : Classify 7to as any one of the 7ri's for which Wi < C20 min Wj, where C2 0 > 1 is the

smallest positive constant such that the probability requirement (1.1) is satisfied.

Given = x, W . F where v* = (k + 1)(n- 1).

Analogous to the proof of Theorem 4.1 and Theorem 2.7, we have the following result:

Theorem 4.3. inf P(CCR 2o) > fd fo i - Fp,v-._+ 1 (2y/c 2oz)]k - '

df p,v*-P+ l(y)dg* (z). (4.3)

where H*(z) is the cdf of Chi(S*E-1)/Chp(S*E-1).

Proof. P {W(i) _ c 2oW(j), j = 2,...,kIXo =

P PIn (Y~j) - 1)'S"- (701 ) -) C20n (x3) ~)S*i1 (() -) j =2, kI F -1, -x , C h ( - 1 ( 7
- In jX IJ - (Y~Ie) z -1) C)(-'-i o () EYj - j 2

3= 2

(y n fEJ [1 - , (y/2 0 ) dH () ).-1(±1 .~)d*z

SP {W(I) < C2oW(.), i = 2,...,k1XO xi

where W&) -+ Fpv. p is independent of 0.ThereforeweeW(j) -- V-~ " -+

P(CCR 2o) = P {W(i) _< C2 oW(j), j = 2,... ,k}

>j f [1 - Fp,v._p+l(2y/c2oz)k - 1 dy'p,v._p+(y)dH*(z). 0
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Remark 4.3. We also have inf P(CCJR2 0) ! P(Z* > 01)J00
[1 - Fp.-+ (2 Y/C200) Iki dFp,v. -p+ 1(y),

where Z* = Chi (SEl)Chp(S*E2i).

Remark 4.4. Since Wi .- 2 .PF~*p1nj we can define an easier classification

procedure R 2 , as follows:

R 2 1: Classify 7r0 as one of the irri's for which Wi ! C2 1, where C21 is the smallest positive

constant such that the probability requirement (1.1) is satisfied.

It is easy to show that inf P(CCJR2 1) = Fp,.-~ (uv* 1c2) f ' 0
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